Answer
The left hand side is equivalent to $1$ therefore the given equation is an identity.
Refer to the solution below.
Work Step by Step
$\text{ LHS } = \cos^2{\theta}(1+\tan^2{\theta})$
$\text{By Expanding:}$
\begin{align}
\text{ LHS } &= \cos^2{\theta}+\cos^2{\theta} \tan^2{\theta} \\[2mm]
&= \cos^2{\theta}+\cos^2{\theta} \cdot \dfrac{\sin^2{\theta}}{\cos^2{\theta}} \\[2mm]
&= \cos^2{\theta}+\sin^2{\theta} \\[2mm]
&= 1 \\[2mm]
&= \text{ RHS}
\end{align}