Answer
$\left( 0,4,2 \right)$
Work Step by Step
According to Cramer’s rule
$x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$.
As
$\begin{align}
& D=\left| \begin{matrix}
3 & 0 & 2 \\
5 & -1 & 0 \\
0 & 4 & 3 \\
\end{matrix} \right| \\
& {{D}_{x}}=\left| \begin{matrix}
4 & 0 & 2 \\
-4 & -1 & 0 \\
22 & 4 & 3 \\
\end{matrix} \right| \\
& {{D}_{y}}=\left| \begin{matrix}
3 & 4 & 2 \\
5 & -4 & 0 \\
0 & 22 & 3 \\
\end{matrix} \right| \\
& {{D}_{z}}=\left| \begin{matrix}
3 & 0 & 4 \\
5 & -1 & -4 \\
0 & 4 & 22 \\
\end{matrix} \right|
\end{align}$
Calculate the four determinants.
$\begin{align}
& D=\left| \begin{matrix}
3 & 0 & 2 \\
5 & -1 & 0 \\
0 & 4 & 3 \\
\end{matrix} \right| \\
& =3\left( -3-0 \right)+2\left( 20-0 \right) \\
& =31
\end{align}$
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
4 & 0 & 2 \\
-4 & -1 & 0 \\
22 & 4 & 3 \\
\end{matrix} \right| \\
& =4\left( -3+0 \right)+2\left( -16+22 \right) \\
& =0
\end{align}$
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
3 & 4 & 2 \\
5 & -4 & 0 \\
0 & 22 & 3 \\
\end{matrix} \right| \\
& =2\left( 110 \right)+3\left( -12-20 \right) \\
& =124
\end{align}$
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
3 & 0 & 4 \\
5 & -1 & -4 \\
0 & 4 & 22 \\
\end{matrix} \right| \\
& =3\left( -22+16 \right)+4\left( 20 \right) \\
& =62
\end{align}$
Substitute the given values
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{0}{31} \\
& =0
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{124}{31} \\
& =4
\end{align}$
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{62}{31} \\
& =2
\end{align}$
Therefore, $\left( x,y,z \right)=\left( 0,4,2 \right)$