Answer
$(x,y)=(4, 2)$
Work Step by Step
As per Cramer's Rule , we have
$x=\dfrac{D_x}{D}$ and $y=\dfrac{D_y}{D}$
The general formula to calculate the determinant of a $2 \times 2$ matrix which has 2 rows and 2 columns, such as:
$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$
Thus,
$D=\begin{vmatrix}3&-4\\2&2\end{vmatrix}=14$
and
$D_x=\begin{vmatrix}4&-4\\12&2\end{vmatrix}=56$
Also,
$D_y=\begin{vmatrix}3&4\\2&12\end{vmatrix}=28$
Now, $x=\dfrac{D_x}{D}=4$ and $y=\dfrac{D_y}{D}=2$
Hence, $(x,y)=(4, 2)$