Answer
$-200$
Work Step by Step
This is a fourth order determinant, so in order to calculate this determinant
split this determinant of order 3.
The second column has a maximum number of zeros, so expand this determinant with the second column as here:
$\begin{align}
& \left| \begin{matrix}
4 & 2 & 8 & -7 \\
-2 & 0 & 4 & 1 \\
5 & 0 & 0 & 5 \\
4 & 0 & 0 & -1 \\
\end{matrix} \right|={{\left( -1 \right)}^{1+2}}2\left| \begin{matrix}
-2 & 4 & 1 \\
5 & 0 & 5 \\
4 & 0 & -1 \\
\end{matrix} \right| \\
& ={{\left( -1 \right)}^{3}}2\left| \begin{matrix}
-2 & 4 & 1 \\
5 & 0 & 5 \\
4 & 0 & -1 \\
\end{matrix} \right| \\
& =-2\left| \begin{matrix}
-2 & 4 & 1 \\
5 & 0 & 5 \\
4 & 0 & -1 \\
\end{matrix} \right|
\end{align}$
Now calculate the third order determinant as follows:
$\begin{align}
& -2\left| \begin{matrix}
-2 & 4 & 1 \\
5 & 0 & 5 \\
4 & 0 & -1 \\
\end{matrix} \right|=\left( -2 \right)\left\{ -2\left| \begin{matrix}
0 & 5 \\
0 & -1 \\
\end{matrix} \right|-5\left| \begin{matrix}
4 & 1 \\
0 & -1 \\
\end{matrix} \right|+4\left| \begin{matrix}
4 & 1 \\
0 & 5 \\
\end{matrix} \right| \right\} \\
& =\left( -2 \right)\left\{ -2\left[ 0\left( -1 \right)-0\left( 5 \right) \right]-5\left[ 4\left( -1 \right)-0\left( 1 \right) \right]+4\left[ 4\left( 5 \right)-0\left( 1 \right) \right] \right\} \\
& =\left( -2 \right)\left\{ -2\left( 0 \right)-5\left( -4 \right)+4\left( 20 \right) \right\} \\
& =\left( -2 \right)\left\{ 0+20+80 \right\}
\end{align}$
Simplify it to get,
$\begin{align}
& -2\left| \begin{matrix}
-2 & 4 & 1 \\
5 & 0 & 5 \\
4 & 0 & -1 \\
\end{matrix} \right|=\left( -2 \right)\left\{ 0+20+80 \right\} \\
& =\left( -2 \right)\left( 100 \right) \\
& =-200
\end{align}$
Hence,
$\left| \begin{matrix}
4 & 2 & 8 & -7 \\
-2 & 0 & 4 & 1 \\
5 & 0 & 0 & 5 \\
4 & 0 & 0 & -1 \\
\end{matrix} \right|=-200$