Answer
$\left( 3,-1,2 \right)$
Work Step by Step
According to Cramer’s rule
$x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$.
As
$\begin{align}
& D=\left| \begin{matrix}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 3 & 2 \\
\end{matrix} \right| \\
& {{D}_{x}}=\left| \begin{matrix}
4 & 1 & 1 \\
7 & -2 & 1 \\
4 & 3 & 2 \\
\end{matrix} \right| \\
& {{D}_{y}}=\left| \begin{matrix}
1 & 4 & 1 \\
1 & 7 & 1 \\
1 & 4 & 2 \\
\end{matrix} \right| \\
& {{D}_{z}}=\left| \begin{matrix}
1 & 1 & 4 \\
1 & -2 & 7 \\
1 & 3 & 4 \\
\end{matrix} \right|
\end{align}$
Calculate the four determinants.
$\begin{align}
& D=\left| \begin{matrix}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 3 & 2 \\
\end{matrix} \right| \\
& =1\left( -4-3 \right)-1\left( 2-1 \right)+1\left( 3+2 \right) \\
& =-3
\end{align}$
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
4 & 1 & 1 \\
7 & -2 & 1 \\
4 & 3 & 2 \\
\end{matrix} \right| \\
& =4\left( -4-3 \right)-1\left( 14-4 \right)+1\left( 21+8 \right) \\
& =-9
\end{align}$
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
1 & 4 & 1 \\
1 & 7 & 1 \\
1 & 4 & 2 \\
\end{matrix} \right| \\
& =1\left( 14-4 \right)-1\left( 8-4 \right)+1\left( 4-7 \right) \\
& =3
\end{align}$
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
1 & 1 & 4 \\
1 & -2 & 7 \\
1 & 3 & 4 \\
\end{matrix} \right| \\
& =1\left( -8-21 \right)-1\left( 4-12 \right)+1\left( 7+8 \right) \\
& =-6
\end{align}$
Substitute the given values
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{-9}{-3} \\
& =3
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{3}{-3} \\
& =-1
\end{align}$
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{-6}{-3} \\
& =2
\end{align}$
Therefore, $\left( x,y,z \right)=\left( 3,-1,2 \right)$