Answer
$\left( 2,-3,4 \right)$
Work Step by Step
According to Cramer’s rule
$x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$.
As
$\begin{align}
& D=\left| \begin{matrix}
4 & -5 & -6 \\
1 & -2 & -5 \\
2 & -1 & 0 \\
\end{matrix} \right| \\
& {{D}_{x}}=\left| \begin{matrix}
-1 & -5 & -6 \\
-12 & -2 & -5 \\
7 & -1 & 0 \\
\end{matrix} \right| \\
& {{D}_{y}}=\left| \begin{matrix}
4 & -1 & -6 \\
1 & -12 & -5 \\
2 & 7 & 0 \\
\end{matrix} \right| \\
& {{D}_{z}}=\left| \begin{matrix}
4 & -5 & -1 \\
1 & -2 & -12 \\
2 & -1 & 7 \\
\end{matrix} \right|
\end{align}$
Calculate the four determinants.
$\begin{align}
& D=\left| \begin{matrix}
4 & -5 & -6 \\
1 & -2 & -5 \\
2 & -1 & 0 \\
\end{matrix} \right| \\
& =4\left( 0-5 \right)+5\left( 0+10 \right)-6\left( -1+4 \right) \\
& =12
\end{align}$
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
-1 & -5 & -6 \\
-12 & -2 & -5 \\
7 & -1 & 0 \\
\end{matrix} \right| \\
& =-1\left( 0-5 \right)+5\left( 0+35 \right)-6\left( 12+14 \right) \\
& =24
\end{align}$
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
4 & -1 & -6 \\
1 & -12 & -5 \\
2 & 7 & 0 \\
\end{matrix} \right| \\
& =4\left( 0+35 \right)+1\left( 0+10 \right)-6\left( 7+24 \right) \\
& =-36
\end{align}$
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
4 & -5 & -1 \\
1 & -2 & -12 \\
2 & -1 & 7 \\
\end{matrix} \right| \\
& =4\left( -14-12 \right)+5\left( 7+24 \right)-1\left( -1+4 \right) \\
& =48
\end{align}$
Substitute the given values
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{24}{12} \\
& =2
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{-36}{12} \\
& =-3
\end{align}$
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{48}{12} \\
& =4
\end{align}$
Therefore, $\left( x,y,z \right)=\left( 2,-3,4 \right)$