Answer
$\left( -1,3,2 \right)$
Work Step by Step
According to Cramer’s rule
$x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$.
As
$\begin{align}
& D=\left| \begin{matrix}
2 & 2 & 3 \\
4 & -1 & 1 \\
5 & -2 & 6 \\
\end{matrix} \right| \\
& {{D}_{x}}=\left| \begin{matrix}
10 & 2 & 3 \\
-5 & -1 & 1 \\
1 & -2 & 6 \\
\end{matrix} \right| \\
& {{D}_{y}}=\left| \begin{matrix}
2 & 10 & 3 \\
4 & -5 & 1 \\
5 & 1 & 6 \\
\end{matrix} \right| \\
& {{D}_{z}}=\left| \begin{matrix}
2 & 2 & 10 \\
4 & -1 & -5 \\
5 & -2 & 1 \\
\end{matrix} \right|
\end{align}$
Calculate the given four determinants.
$\begin{align}
& D=\left| \begin{matrix}
2 & 2 & 3 \\
4 & -1 & 1 \\
5 & -2 & 6 \\
\end{matrix} \right| \\
& =2\left( -6+2 \right)-2\left( 24-5 \right)+3\left( -8+5 \right) \\
& =-55
\end{align}$
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
10 & 2 & 3 \\
-5 & -1 & 1 \\
1 & -2 & 6 \\
\end{matrix} \right| \\
& =10\left( -6+2 \right)-2\left( -30-1 \right)+3\left( 10+1 \right) \\
& =55
\end{align}$
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
2 & 10 & 3 \\
4 & -5 & 1 \\
5 & 1 & 6 \\
\end{matrix} \right| \\
& =2\left( -30-1 \right)-10\left( 24-5 \right)+3\left( 4+25 \right) \\
& =-165
\end{align}$
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
2 & 2 & 10 \\
4 & -1 & -5 \\
5 & -2 & 1 \\
\end{matrix} \right| \\
& =2\left( -1-10 \right)-2\left( 4+25 \right)+10\left( -8+5 \right) \\
& =-110
\end{align}$
Substitute the given values
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{55}{-55} \\
& =-1
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{-165}{-55} \\
& =3
\end{align}$
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{-110}{-55} \\
& =2
\end{align}$
Therefore, $\left( x,y,z \right)=\left( -1,3,2 \right)$