Answer
$\left( 2,3,1 \right)$
Work Step by Step
According to Cramer’s rule
$x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$.
As
$\begin{align}
& D=\left| \begin{matrix}
1 & 0 & 2 \\
0 & 2 & -1 \\
2 & 3 & 0 \\
\end{matrix} \right| \\
& {{D}_{x}}=\left| \begin{matrix}
4 & 0 & 2 \\
5 & 2 & -1 \\
13 & 3 & 0 \\
\end{matrix} \right| \\
& {{D}_{y}}=\left| \begin{matrix}
1 & 4 & 2 \\
0 & 5 & -1 \\
2 & 13 & 0 \\
\end{matrix} \right| \\
& {{D}_{z}}=\left| \begin{matrix}
1 & 0 & 4 \\
0 & 2 & 5 \\
2 & 3 & 13 \\
\end{matrix} \right|
\end{align}$
Calculate the four determinants.
$\begin{align}
& D=\left| \begin{matrix}
1 & 0 & 2 \\
0 & 2 & -1 \\
2 & 3 & 0 \\
\end{matrix} \right| \\
& =1\left( 0+3 \right)+2\left( 0-4 \right) \\
& =-5
\end{align}$
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
4 & 0 & 2 \\
5 & 2 & -1 \\
13 & 3 & 0 \\
\end{matrix} \right| \\
& =4\left( 0+3 \right)+2\left( 15-26 \right) \\
& =-10
\end{align}$
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
1 & 4 & 2 \\
0 & 5 & -1 \\
2 & 13 & 0 \\
\end{matrix} \right| \\
& =1\left( 0+13 \right)+2\left( -4-10 \right) \\
& =-15
\end{align}$
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
1 & 0 & 4 \\
0 & 2 & 5 \\
2 & 3 & 13 \\
\end{matrix} \right| \\
& =1\left( 26-15 \right)+2\left( 0-8 \right) \\
& =-5
\end{align}$
Substitute the given values
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{-10}{-5} \\
& =2
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{-15}{-5} \\
& =3
\end{align}$
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{-5}{-5} \\
& =1
\end{align}$
Therefore, $\left( x,y,z \right)=\left( 2,3,1 \right)$