Answer
a) The product of A and B is $\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -5 & -5 \\
\end{matrix} \right]$.
b) The graph is shown below
Work Step by Step
(a)
To multiply the two matrices, use the row-by-column operation,
$A=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]$
$B=\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 5 & 5 \\
\end{matrix} \right]$
Calculate the product as follows:
$\begin{align}
& AB=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 5 & 5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( 0 \right)+0\left( 0 \right) & 1\left( 3 \right)+0\left( 0 \right) & 1\left( 3 \right)+0\left( 1 \right) & 1\left( 1 \right)+0\left( 1 \right) & 1\left( 1 \right)+0\left( 5 \right) & 1\left( 0 \right)+0\left( 5 \right) \\
0\left( 0 \right)+0\left( -1 \right) & 0\left( 3 \right)+0\left( -1 \right) & 0\left( 3 \right)+1\left( -1 \right) & 0\left( 1 \right)+1\left( -1 \right) & 0\left( 1 \right)+5\left( -1 \right) & 0\left( 0 \right)+5\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -5 & -5 \\
\end{matrix} \right]
\end{align}$
Thus, the product is $\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -5 & -5 \\
\end{matrix} \right]$.
(b)
The matrix obtained by multiplying the matrices A and B is as follows:
$\left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -5 & -5 \\
\end{matrix} \right]$
Each column of the matrix will represent the coordinates of the plot.
Plot the above obtained coordinates from the matrix AB and then trace them to obtain the figure.
In the graph, it can be seen that the letter L gets reflected across the x-axis. Due to the multiplication of a new matrix, the coordinates are changed and as a result, the graph is also changed.