Answer
.
Work Step by Step
First we will consider the product $CB$,
$\begin{align}
& CB=\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1\left( 1 \right)-0\left( 0 \right) & -1\left( 0 \right)-0\left( -1 \right) \\
0\left( 1 \right)-1\left( 0 \right) & 0\left( 0 \right)-1\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Now we will find the product $A\left( CB \right)$ as follows:
$\begin{align}
& A\left( CB \right)=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1(-1)-0(0) & 1(0)-1(1) \\
0(-1)-1(0) & 0(0)-1(1) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & -1 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Now we will find the product $AC$,
$\begin{align}
& AC=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)-0\left( 0 \right) & 1\left( 0 \right)-0\left( 1 \right) \\
0\left( -1 \right)-1\left( 0 \right) & 0\left( 0 \right)-1\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Now we will find the product $(AC)B$ as follows:
$\begin{align}
& (AC)B=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1(1)-0(0) & -1(0)+1(-1) \\
0(1)+1(0) & 0(0)+1(-1) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & -1 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
So, $A\left( CB \right)=(AC)B$
Hence the associative property is verified.