Answer
a) $AB=\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]$
b) $BA=\left[ \begin{matrix}
4 & -1 & -3 & 1 \\
-1 & 4 & -3 & 2 \\
14 & -11 & -3 & -1 \\
25 & -25 & 0 & -5 \\
\end{matrix} \right]$
Work Step by Step
(a)
Consider,
$\begin{align}
& AB=\left[ \begin{array}{*{35}{l}}
2 & -3 & 1 & -1 \\
1 & 1 & -2 & 1 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
1 & 2 \\
-1 & 1 \\
5 & 4 \\
10 & 5 \\
\end{array} \right] \\
& =\left[ \begin{matrix}
2\left( 1 \right)-3\left( -1 \right)+1\left( 5 \right)-1\left( 10 \right) & 2\left( 2 \right)-3\left( 1 \right)+1\left( 4 \right)-1\left( 5 \right) \\
1\left( 1 \right)+1\left( -1 \right)-2\left( 5 \right)+1\left( 10 \right) & 1\left( 2 \right)+1\left( 1 \right)-2\left( 4 \right)+1\left( 5 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2+3+5-10 & 4-3+4-5 \\
1-1-10+10 & 2+1-8+5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
(b)
Consider,
$\begin{align}
& BA=\left[ \begin{array}{*{35}{l}}
1 & 2 \\
-1 & 1 \\
5 & 4 \\
10 & 5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
2 & -3 & 1 & -1 \\
1 & 1 & -2 & 1 \\
\end{array} \right] \\
& =\left[ \begin{matrix}
1\left( 2 \right)+2\left( 1 \right) & 1\left( -3 \right)+2\left( 1 \right) & 1\left( 1 \right)+2\left( -2 \right) & 1\left( -1 \right)+2\left( 1 \right) \\
-1\left( 2 \right)+1\left( 1 \right) & -1\left( -3 \right)+1\left( 1 \right) & -1\left( 1 \right)+1\left( -2 \right) & -1\left( -1 \right)+1\left( 1 \right) \\
5\left( 2 \right)+4\left( 1 \right) & 5\left( -3 \right)+4\left( 1 \right) & 5\left( 1 \right)+4\left( -2 \right) & 5\left( -1 \right)+4\left( 1 \right) \\
10\left( 2 \right)+5\left( 1 \right) & 10\left( -3 \right)+5\left( 1 \right) & 10\left( 1 \right)+5\left( -2 \right) & 10\left( -1 \right)+5\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2+2 & -3+2 & 1-4 & -1+2 \\
-2+1 & 3+1 & -1-2 & 1+1 \\
10+4 & -15+4 & 5-8 & -5+4 \\
20+5 & -30+5 & 10-10 & -10+5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4 & -1 & -3 & 1 \\
-1 & 4 & -3 & 2 \\
14 & -11 & -3 & -1 \\
25 & -25 & 0 & -5 \\
\end{matrix} \right]
\end{align}$