Answer
See the verification below.
Work Step by Step
We prove that, $\left( AB \right)C=A\left( BC \right)$ holds for any matrix $A,B$ and $C$.
Take the three matrices $A=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\text{ and }C=\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]$.
To prove that, $\left( AB \right)C=A\left( BC \right)$ :
First we will find the product $AB$. That is,
$\begin{align}
& AB=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( 1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\
0\left( 1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Now find the product $\left( AB \right)C$ as below:
$\begin{align}
& \left( AB \right)C=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)-1\left( 0 \right) & 0\left( 0 \right)+\left( -1 \right)\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Therefore, $\left( AB \right)C=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]$
Next we will find the product $BC$. That is,
$\begin{align}
& BC=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)+\left( -1 \right)\left( 0 \right) & 0\left( 0 \right)+\left( -1 \right)\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
And then we will find the product,
$\begin{align}
& A\left( BC \right)=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\
0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Thus, clearly $\left( AB \right)C=A\left( BC \right)$ and hence the associative property is verified.