Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 918: 48

Answer

See the verification below.

Work Step by Step

We prove that, $\left( AB \right)C=A\left( BC \right)$ holds for any matrix $A,B$ and $C$. Take the three matrices $A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right],B=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\text{ and }C=\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right]$. To prove that, $\left( AB \right)C=A\left( BC \right)$ : First we will find the product $AB$. That is, $\begin{align} & AB=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\ 0\left( 1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ Now find the product $\left( AB \right)C$ as below: $\begin{align} & \left( AB \right)C=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)-1\left( 0 \right) & 0\left( 0 \right)+\left( -1 \right)\left( 1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ Therefore, $\left( AB \right)C=\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right]$ Next we will find the product $BC$. That is, $\begin{align} & BC=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)+\left( -1 \right)\left( 0 \right) & 0\left( 0 \right)+\left( -1 \right)\left( 1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ And then we will find the product, $\begin{align} & A\left( BC \right)=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\ 0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ Thus, clearly $\left( AB \right)C=A\left( BC \right)$ and hence the associative property is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.