Answer
$BC+CB=\left[ \begin{matrix}
11 & -1 \\
-7 & -3 \\
\end{matrix} \right]$
Work Step by Step
First we will find the product matrix $BC$ as follows,
$\begin{align}
& BC=\left[ \begin{matrix}
5 & 1 \\
-2 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
5\left( 1 \right)+1\left( -1 \right) & 5\left( -1 \right)+1\left( 1 \right) \\
-2\left( 1 \right)-2\left( -1 \right) & -2\left( -1 \right)-2\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
5-1 & -5+1 \\
-2+2 & 2-2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4 & -4 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
Now we will find $CB$ as follows:
$\begin{align}
& CB=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
5 & 1 \\
-2 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( 5 \right)-1\left( -2 \right) & 1\left( 1 \right)-1\left( -2 \right) \\
-1\left( 5 \right)+1\left( -2 \right) & -1\left( 1 \right)+1\left( -2 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
5+2 & 1+2 \\
-5-2 & -1-2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
7 & 3 \\
-7 & -3 \\
\end{matrix} \right]
\end{align}$
Now we will add the matrices $BC\text{ and }CB$ as follows:
$\begin{align}
& BC+CB=\left[ \begin{matrix}
4 & -4 \\
0 & 0 \\
\end{matrix} \right]+\left[ \begin{matrix}
7 & 3 \\
-7 & -3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4+7 & -4+3 \\
0-7 & 0-3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
11 & -1 \\
-7 & -3 \\
\end{matrix} \right]
\end{align}$