Answer
The graph is shown below:
Work Step by Step
To shift the figure left by 2 units and down by 3 units, we will subtract the matrix $B$ by the matrix below:
$\left[ \begin{matrix}
2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{matrix} \right]$
And the required coordinates will be obtained as below:
$\begin{align}
& \left[ \begin{matrix}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 5 & 5 \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{matrix} \right]=\left[ \begin{matrix}
0-2 & 3-2 & 3-2 & 1-2 & 1-2 & 0-2 \\
0-3 & 0-3 & 1-3 & 1-3 & 5-3 & 5-3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-2 & 1 & 1 & -1 & -1 & -2 \\
-3 & -3 & -2 & -2 & 2 & 2 \\
\end{matrix} \right]
\end{align}$
The required coordinates to draw the shifted letter L are as follows:
$\left( -2,-3 \right),\left( 1,-3 \right),\left( 1,-2 \right),\left( -1,-2 \right),\left( -1,2 \right)$ and $\left( -2,2 \right)$.
Plot the points and trace them to obtain the curve.
By subtracting the matrix $\left[ \begin{matrix}
2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{matrix} \right]$ from matrix B, and plotting the obtained coordinates, the graph traced was shifted 2 units left and 3 units down from the original.