Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 918: 53

Answer

The graph is shown below:

Work Step by Step

To shift the figure left by 2 units and down by 3 units, we will subtract the matrix $B$ by the matrix below: $\left[ \begin{matrix} 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ \end{matrix} \right]$ And the required coordinates will be obtained as below: $\begin{align} & \left[ \begin{matrix} 0 & 3 & 3 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 5 & 5 \\ \end{matrix} \right]-\left[ \begin{matrix} 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 0-2 & 3-2 & 3-2 & 1-2 & 1-2 & 0-2 \\ 0-3 & 0-3 & 1-3 & 1-3 & 5-3 & 5-3 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -2 & 1 & 1 & -1 & -1 & -2 \\ -3 & -3 & -2 & -2 & 2 & 2 \\ \end{matrix} \right] \end{align}$ The required coordinates to draw the shifted letter L are as follows: $\left( -2,-3 \right),\left( 1,-3 \right),\left( 1,-2 \right),\left( -1,-2 \right),\left( -1,2 \right)$ and $\left( -2,2 \right)$. Plot the points and trace them to obtain the curve. By subtracting the matrix $\left[ \begin{matrix} 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ \end{matrix} \right]$ from matrix B, and plotting the obtained coordinates, the graph traced was shifted 2 units left and 3 units down from the original.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.