Answer
.
Work Step by Step
Prove that, $A\left( B+C \right)=AB+AC$ and $\left( A+B \right)C=AC+BC$ holds for any matrix $A,B$ and $C$.
So, take the three matrices, $A=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\text{ and }C=\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]$.
First we will consider $A\left( B+C \right)$ ,
That is,
$\begin{align}
& A\left( B+C \right)=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left( \left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]+\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right) \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left( \left[ \begin{matrix}
1-1 & 0+0 \\
0+0 & -1+1 \\
\end{matrix} \right] \right) \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
Next we will find, $AB+AC$. For this consider,
$\begin{align}
& AB=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( 1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\
0\left( 1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
And,
$\begin{align}
& AC=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Now we will add $AB\text{ and }AC$ as below:
$\begin{align}
& AB+AC=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]+\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
This verifies that $A\left( B+C \right)=AB+AC=\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]$.
Next verify that $\left( A+B \right)C=AC+BC$. For this we will consider,
$\begin{align}
& \left( A+B \right)C=\left( \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]+\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right] \right)\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& \left( \left[ \begin{matrix}
1+1 & 0+0 \\
0+0 & 1-1 \\
\end{matrix} \right] \right)\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2 & 0 \\
0 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
After further simplification, we get,
$\begin{align}
& \left[ \begin{matrix}
2 & 0 \\
0 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
2\left( -1 \right)+0\left( 0 \right) & 2\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)+\left( 0 \right)0 & 0\left( 0 \right)+0\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-2 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
Therefore, $\left( A+B \right)C=\left[ \begin{matrix}
-2 & 0 \\
0 & 0 \\
\end{matrix} \right]$
Now find $AC$ as follows:
$\begin{align}
& AC=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
And $BC$ as follows:
$\begin{align}
& BC=\left[ \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\
0\left( -1 \right)+\left( -1 \right)0 & 0\left( 0 \right)+\left( -1 \right)1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]
\end{align}$
Add $AC+BC$ as follows:
$\begin{align}
& AC+BC=\left[ \begin{matrix}
-1 & 0 \\
0 & 1 \\
\end{matrix} \right]+\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1-1 & 0+0 \\
0+0 & 1-1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-2 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
Therefore, $AC+BC=\left[ \begin{matrix}
-2 & 0 \\
0 & 0 \\
\end{matrix} \right]$
This verifies that,
$\left( A+B \right)C=AC+BC=\left[ \begin{matrix}
-2 & 0 \\
0 & 0 \\
\end{matrix} \right]$
Hence, the distributive property is verified.