Answer
a) $AB=\left[ \begin{matrix}
18 & 1 \\
-1 & 15 \\
\end{matrix} \right]$
b) $BA=\left[ \begin{matrix}
0 & 1 & -7 & 0 \\
3 & -1 & 1 & 3 \\
2 & -3 & 17 & 2 \\
17 & -6 & 8 & 17 \\
\end{matrix} \right]$
Work Step by Step
(a)
Consider,
$\begin{align}
& AB=\left[ \begin{array}{*{35}{l}}
2 & -1 & 3 & 2 \\
1 & 0 & -2 & 1 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
-1 & 2 \\
1 & 1 \\
3 & -4 \\
6 & 5 \\
\end{array} \right] \\
& =\left[ \begin{matrix}
2\left( -1 \right)-1\left( 1 \right)+3\left( 3 \right)+2\left( 6 \right) & 2\left( 2 \right)-1\left( 1 \right)+3\left( -4 \right)+2\left( 5 \right) \\
1\left( -1 \right)+0\left( 1 \right)-2\left( 3 \right)+1\left( 6 \right) & 1\left( 2 \right)+0\left( 1 \right)-2\left( -4 \right)+1\left( 5 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-2-1+9+12 & 4-1-12+10 \\
-1+0-6+6 & 2+0+8+5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
18 & 1 \\
-1 & 15 \\
\end{matrix} \right]
\end{align}$
(b)
Consider,
$\begin{align}
& BA=\left[ \begin{array}{*{35}{l}}
-1 & 2 \\
1 & 1 \\
3 & -4 \\
6 & 5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
2 & -1 & 3 & 2 \\
1 & 0 & -2 & 1 \\
\end{array} \right] \\
& =\left[ \begin{matrix}
-1\left( 2 \right)+2\left( 1 \right) & -1\left( -1 \right)+2\left( 0 \right) & -1\left( 3 \right)+2\left( -2 \right) & -1\left( 2 \right)+2\left( 1 \right) \\
1\left( 2 \right)+1\left( 1 \right) & 1\left( -1 \right)+1\left( 0 \right) & 1\left( 3 \right)+1\left( -2 \right) & 1\left( 2 \right)+1\left( 1 \right) \\
3\left( 2 \right)-4\left( 1 \right) & 3\left( -1 \right)-4\left( 0 \right) & 3\left( 3 \right)-4\left( -2 \right) & 3\left( 2 \right)-4\left( 1 \right) \\
6\left( 2 \right)+5\left( 1 \right) & 6\left( -1 \right)+5\left( 0 \right) & 6\left( 3 \right)+5\left( -2 \right) & 6\left( 2 \right)+5\left( 1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-2+2 & 1+0 & -3-4 & -2+2 \\
2+1 & -1+0 & 3-2 & 2+1 \\
6-4 & -3+0 & 9+8 & 6-4 \\
12+5 & -6+0 & 18-10 & 12+5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 1 & -7 & 0 \\
3 & -1 & 1 & 3 \\
2 & -3 & 17 & 2 \\
17 & -6 & 8 & 17 \\
\end{matrix} \right]
\end{align}$