Answer
$A\left( B+C \right)=\left[ \begin{array}{*{35}{l}}
24 & 0 \\
-33 & -5 \\
-3 & -1 \\
\end{array} \right]$
Work Step by Step
Consider, $A\left( B+C \right)$. By the distributive law, $A\left( B+C \right)=AB+AC$.
So, consider the matrix product,
$\begin{align}
& AB=\left[ \begin{array}{*{35}{l}}
4 & 0 \\
-3 & 5 \\
0 & 1 \\
\end{array} \right]\left[ \begin{matrix}
5 & 1 \\
-2 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{array}{*{35}{l}}
4\left( 5 \right)+0\left( -2 \right) & 4\left( 1 \right)+0\left( -2 \right) \\
-3\left( 5 \right)+5\left( -2 \right) & -3\left( 1 \right)+5\left( -2 \right) \\
0\left( 5 \right)+1\left( -2 \right) & 0\left( 1 \right)+1\left( -2 \right) \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
20-0 & 4-0 \\
-15-10 & -3-10 \\
0-2 & 0-2 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
20 & 4 \\
-25 & -13 \\
-2 & -2 \\
\end{array} \right]
\end{align}$
Next we will consider the matrix product $AC$ as below:
$\begin{align}
& AC=\left[ \begin{array}{*{35}{l}}
4 & 0 \\
-3 & 5 \\
0 & 1 \\
\end{array} \right]\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{array}{*{35}{l}}
4\left( 1 \right)+0\left( -1 \right) & 4\left( -1 \right)+0\left( 1 \right) \\
-3\left( 1 \right)+5\left( -1 \right) & -3\left( -1 \right)+5\left( 1 \right) \\
0\left( 1 \right)+1\left( -1 \right) & 0\left( -1 \right)+1\left( 1 \right) \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
4+0 & -4+0 \\
-3-5 & 3+5 \\
0-1 & 0+1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
4 & -4 \\
-8 & 8 \\
-1 & 1 \\
\end{array} \right]
\end{align}$
Now add these matrices as below:
$\begin{align}
& A\left( B+C \right)=AB+AC \\
& =\left[ \begin{array}{*{35}{l}}
20 & 4 \\
-25 & -13 \\
-2 & -2 \\
\end{array} \right]+\left[ \begin{array}{*{35}{l}}
4 & -4 \\
-8 & 8 \\
-1 & 1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
20+4 & 4-4 \\
-25-8 & -13+8 \\
-2-1 & -2+1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
24 & 0 \\
-33 & -5 \\
-3 & -1 \\
\end{array} \right]
\end{align}$