Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 63

Answer

See the full explanation below.

Work Step by Step

Let us consider the left side of the given expression: $\tan \frac{\alpha }{2}$ By using the trigonometric identity $\tan \frac{x}{2}=\frac{\sin x}{1+\cos x}$ and $\tan \frac{\alpha }{2}=\frac{\sin \alpha }{1+\cos \alpha }$ The above expression can be further simplified by multiplying the numerator and denominator by $\frac{1}{\cos \alpha }$: $\begin{align} & \tan \frac{\alpha }{2}=\frac{\sin \alpha \times \frac{1}{\cos \alpha }}{\left( 1+\cos \alpha \right)\times \frac{1}{\cos \alpha }} \\ & =\frac{\frac{\sin \alpha }{\cos \alpha }}{\frac{1}{\cos \alpha }+\frac{\cos \alpha }{\cos \alpha }} \\ & =\frac{\tan \alpha }{\sec \alpha +1} \end{align}$ Hence, the left side of the given expression is equal to the right side, which is $\tan \frac{\alpha }{2}=\frac{\tan \alpha }{\sec \alpha +1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.