Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 35

Answer

The required value of $6{{\sin }^{4}}x$ is $\frac{9}{4}-3\cos 2x+\frac{3}{4}\cos 4x$.

Work Step by Step

We have to find the value of $6{{\sin }^{4}}x$; various sine formulas are used that represent the answer in the form of cos. $\begin{align} & 6{{\sin }^{4}}x=6{{\left( \frac{1-\cos 2x}{2} \right)}^{2}} \\ & =6\left( \frac{1-2\cos 2x+{{\cos }^{2}}2x}{4} \right) \\ & =\frac{6-12\cos 2x+6{{\cos }^{2}}2x}{4} \\ & =\frac{3}{2}-3\cos 2x+\frac{3}{2}{{\cos }^{2}}2x \end{align}$ I And in step 2, the identity of ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ is used. $\begin{align} & 6{{\sin }^{4}}x=\frac{3}{2}-3\cos 2x+\frac{3}{2}\left( \frac{1+\cos 4x}{2} \right) \\ & =\frac{3}{2}-3\cos 2x+\frac{3}{2}\left( \frac{1}{2}+\frac{\cos 4x}{2} \right) \\ & =\frac{3}{2}-3\cos 2x+\frac{3}{4}+\frac{3}{4}\cos 4x \\ & =\frac{9}{4}-3\cos 2x+\frac{3}{4}\cos 4x \end{align}$ Or, in the last step, $\frac{3}{4}$ is distributed and added to $\frac{3}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.