Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 59

Answer

See the explanation below.

Work Step by Step

Let us consider the left side of the given expression: ${{\sin }^{2}}\frac{\theta }{2}$ By using the trigonometric identity $\cos 2x=1-2si{{n}^{2}}x$ and $\frac{1}{\cos \theta }=\sec \theta $, the above expression can be further simplified as: $\begin{align} & {{\sin }^{2}}\frac{\theta }{2}=\frac{1-\cos 2\left( \frac{\theta }{2} \right)}{2} \\ & =\frac{1-\cos \theta }{2} \end{align}$ By multiplying the numerator and denominator by $\frac{1}{\cos \theta }$ $\begin{align} & \frac{1-\cos \theta }{2}=\frac{\left( 1-\cos \theta \right)\times \frac{1}{\cos \theta }}{2\times \frac{1}{\cos \theta }} \\ & =\frac{\frac{1}{\cos \theta }-\frac{\cos \theta }{\cos \theta }}{\frac{2}{\cos \theta }} \\ & =\frac{\sec \theta -1}{2\sec \theta } \end{align}$ Hence, the the left side of the expression is equal to the right side, which is ${{\sin }^{2}}\frac{\theta }{2}=\frac{\sec \theta -1}{2\sec \theta }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.