Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 21

Answer

The exact value of $\frac{2\tan \frac{\pi }{12}}{1-{{\tan }^{2}}\frac{\pi }{12}}$ is $\frac{\sqrt{3}}{3}$.

Work Step by Step

Recall the given expression. $\tan 2\theta =\frac{2\tan \theta }{1-{{\tan }^{2}}\theta }$ Apply the given expression. $\begin{align} & \frac{2\tan \frac{\pi }{12}}{1-{{\tan }^{2}}\frac{\pi }{12}}=\tan 2\left( \frac{\pi }{12} \right) \\ & =\tan \left( \frac{\pi }{6} \right) \\ & =\frac{\sqrt{3}}{3} \end{align}$ Therefore, the exact value of $\frac{2\tan \frac{\pi }{12}}{1-{{\tan }^{2}}\frac{\pi }{12}}$ is $\frac{\sqrt{3}}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.