Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 62

Answer

See the full explanation below.

Work Step by Step

Let us consider the left side of the given expression: ${{\cos }^{2}}\frac{\theta }{2}$ By using the trigonometric identity $2{{\cos }^{2}}x-1=\cos 2x$ and $\frac{1}{\cos x}=\sec x$, The above expression can be further simplified as: $\begin{align} & {{\cos }^{2}}\frac{\theta }{2}=\frac{1+\cos 2\left( \frac{\theta }{2} \right)}{2} \\ & =\frac{1+\cos \theta }{2} \end{align}$ By multiplying numerator and denominator by $\frac{1}{\cos \theta }$, we get: $\begin{align} & \frac{1+\cos \theta }{2}=\frac{\left( 1+\cos \theta \right)\times \frac{1}{\cos \theta }}{2\times \frac{1}{\cos \theta }} \\ & =\frac{\frac{1}{\cos \theta }+\frac{\cos \theta }{\cos \theta }}{2\frac{1}{\cos \theta }} \\ & =\frac{\sec \theta +1}{2\sec \theta } \end{align}$ Hence, the left side of the given expression is equal to the right side, which is ${{\cos }^{2}}\frac{\theta }{2}=\frac{\sec \theta +1}{2\sec \theta }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.