Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 61

Answer

See the explanation below.

Work Step by Step

Let us consider the left side of the given expression: ${{\cos }^{2}}\frac{\theta }{2}$ By using the trigonometric identity $2{{\cos }^{2}}x-1=\cos 2x$ and $\frac{\sin x}{\cos x}=\tan x$, the above expression can be further simplified as: $\begin{align} & {{\cos }^{2}}\frac{\theta }{2}=\frac{1+\cos 2\left( \frac{\theta }{2} \right)}{2} \\ & =\frac{1+\cos \theta }{2} \end{align}$ By multiplying the numerator and denominator by $\frac{\sin \theta }{\cos \theta }$ $\begin{align} & \frac{1+\cos \theta }{2}=\frac{\left( 1+\cos \theta \right)\times \frac{\sin \theta }{\cos \theta }}{2\times \frac{\sin \theta }{\cos \theta }} \\ & =\frac{\frac{\sin \theta }{\cos \theta }+\frac{\sin \theta \cos \theta }{\cos \theta }}{2\frac{\sin \theta }{\cos \theta }} \\ & =\frac{\tan \theta +\sin \theta }{2\tan \theta } \end{align}$ Hence, the the left side of the given expression is equal to the right side, which is ${{\cos }^{2}}\frac{\theta }{2}=\frac{\sin \theta +\tan \theta }{2\tan \theta }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.