Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 28

Answer

See the explanation below.

Work Step by Step

$1-{{\tan }^{2}}x=\frac{\cos 2x}{{{\cos }^{2}}x}$ Consider the left side of the given expression and apply the quotient Identity formula. $\begin{align} & 1-{{\tan }^{2}}x=1-\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x} \\ & =\frac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x} \end{align}$ Apply the double angle formula, $1-{{\tan }^{2}}x=\frac{\cos 2x}{{{\cos }^{2}}x}$ Hence, it is proved that the given identity $1-{{\tan }^{2}}x=\frac{\cos 2x}{{{\cos }^{2}}x}$ holds true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.