Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 680: 33

Answer

See the explanation below.

Work Step by Step

$\sin 4t=4\sin t{{\cos }^{3}}t-4{{\sin }^{3}}t\cos t$ Recall the sum Trigonometric Identities, $\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b$ Consider the left side of the given expression and apply the above formula, $\begin{align} & \sin 4t=\sin \left( 2t+2t \right) \\ & =\sin 2t\cos 2t+\cos 2t\sin 2t \\ & =\cos 2t\left( \sin 2t+\sin 2t \right) \\ & =\cos 2t\left( 2\sin 2t \right) \end{align}$ Recall the double angle formula, $\begin{align} & \cos 2t={{\cos }^{2}}t-{{\sin }^{2}}t \\ & \sin 2t=2\sin t\cos t \\ \end{align}$ Apply the double angle formula $\begin{align} & \sin 4t=\left( {{\cos }^{2}}t-{{\sin }^{2}}t \right)\left( 2 \right)2\sin t\cos t \\ & =4\sin t{{\cos }^{3}}t-4{{\sin }^{3}}t\cos t \end{align}$ Hence, it is proved that the given identity $\sin 4t=4\sin t{{\cos }^{3}}t-4{{\sin }^{3}}t\cos t$ holds true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.