Answer
$sin(t) =\frac{\sqrt 2}{2}$,
$cos(t) =-\frac{\sqrt 2}{2}$,
$tan(t) =-1$,
$cot(t) =-1$,
$sec(t) =-\sqrt 2$,
$csc(t) =\sqrt 2$.
Work Step by Step
Given $t=\frac{11\pi}{4}=2\pi+\frac{3\pi}{4}$, the terminal side is in quadrant II and $t_0=\frac{\pi}{4}$ to the $-x$-axis , we have:
$sin(t)=sin(t_0)=\frac{\sqrt 2}{2}$,
$cos(t)=-cos(t_0)=-\frac{\sqrt 2}{2}$,
$tan(t)=-tan(t_0)=-1$,
$cot(t)=-cot(t_0)=-1$,
$sec(t)=-sec(t_0)=-\sqrt 2$,
$csc(t)=csc(t_0)=\sqrt 2$.