Answer
$6(3x-5)(2x+1)^2(5x-4)$
Work Step by Step
The given expression is
$2(3x-5)\cdot 3(2x+1)^3+(3x-5)^2\cdot 3(2x+1)^2\cdot 2$
$=6(3x-5)(2x+1)^3+6(3x-5)^2(2x+1)^2$
Factor out $6(3x-5)(2x+1)^2$.
$=6(3x-5)(2x+1)^2[(2x+1)+(3x-5)]$
$=6(3x-5)(2x+1)^2[2x+1+3x-5]$
Add like terms.
$=6(3x-5)(2x+1)^2(5x-4)$
Hence, the completely factored form of the given expression is $6(3x-5)(2x+1)^2(5x-4)$.