Answer
$\dfrac{6 \sqrt 3}{\pi}$
Work Step by Step
Consider the function $A=\int_a^b [f(y)-g(y)] dy$
$A=\int_{-1}^{1} ]\sec^2(\pi x/3)-x^{1/3}]dx$
or, $\implies A =(3/pi)[\tan (\pi x/3)-(3/4) x^{4/3}]_{-1}^{1}$
$\implies A=[\dfrac{3}{\pi}(\sqrt 3)-\dfrac{3}{4}]-[\dfrac{3}{\pi}(-\sqrt 3)-\dfrac{3}{4}]$
Thus, $A=\dfrac{6 \sqrt 3}{\pi}$