Answer
$2$
Work Step by Step
Consider the function $A=\int_a^b [f(y)-g(y)] dy$
Then, we have
$A=(3)\int_{0}^{\pi/2} \sin y\sqrt {\cos y }dy-0$
$\implies A =3\int_{0}^{\pi/2} \sin y\sqrt {\cos y }dy$
Plug $\cos y =k$ or, $ -\sin y= dk$
This implies that
$A=(-3)[\dfrac{2}{3} (k)^{3/2}]_{0}^{\pi/2}=-2(0-1)=2$