Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 304: 53

Answer

$\displaystyle \frac{243}{8}$

Work Step by Step

Rewrite the equations as functions of y: $\left[\begin{array}{lll} y^{2}-4x=4 & ... & 4x-y=16\\ y^{2}-4=4x & & 4x=y+16\\ x=\frac{1}{4}(y^{2}-4) & & x=\frac{1}{4}(y+16) \end{array}\right]$ Graphing the given equations, we find the intersections or we solve the equation $f(y)=g(y), $ where $ f(y)=\displaystyle \frac{1}{4}(y+16) \quad$ (the curve on the right side) and $ g(y)=\displaystyle \frac{1}{4}(y^{2}-4)\quad$ (the curve on the left). When $y\in[c,d]=[-4,5]$, the area between the graphs is $A=\displaystyle \int_{c}^{d} [f(y)-g(y)]dy=\displaystyle \int_{-4}^{5}\frac{1}{4}[y+16-(y^{2}-4)]dy$ $=\displaystyle \frac{1}{4}\int_{-4}^{5}[y-y^{2}+20)]dy$ $=\displaystyle \frac{1}{4}\left[\frac{y^{2}}{2}-\frac{y^{3}}{3}+20y\right]_{-4}^{5}$ $=\displaystyle \frac{1}{4}\left[\frac{25-16}{2}-\frac{125+64}{3}+20(5+4)\right]$ $=\displaystyle \frac{243}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.