Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 304: 60

Answer

$\displaystyle \frac{27}{4}$

Work Step by Step

Expressing the $y$'s as functions of $x$, $y=f(x)=x^{3},$ $y=g(x)=3x^{2}-4.$ Graphing the functions, we find the intersection points at $x=-1$ and $x=2$. Over the interval $x\in[-1,2],\ f(x)$ is above $g(x)$, so $A=\displaystyle \int_{a}^{b}(y_{above}-y_{below})dx=\int_{-1}^{2}[x^{3}-(3x^{2}-4)]dx$. $=\displaystyle \int_{-1}^{2}[x^{3}-3x^{2}+4]dx$. $=\displaystyle \left[\frac{x^{4}}{4}-x^{3}+4x \right]_{-1}^{2}$ $=\displaystyle \frac{16-1}{4}-(8+1)+4(2+1)$ $=\displaystyle \frac{15}{4}-9+12$ =$\displaystyle \frac{27}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.