Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 304: 65

Answer

$\displaystyle \frac{4}{3}-\frac{4}{\pi}$

Work Step by Step

Graph the functions. Over the interval $x\in[-1,1]$, the graph of $f(x)=1-x^{2}$ is above the graph of $g(x)=\displaystyle \cos(\frac{\pi x}{2})$. $A=\displaystyle \int_{a}^{b}(y_{above}-y_{below})dx=\int_{-1}^{1}[1-x^{2}-\cos(\frac{\pi x}{2})]dx$. $=\displaystyle \left[x -\frac{x^{3}}{3} \right]_{-1}^{1}-\int_{-1}^{1}\cos(\frac{\pi x}{2})dx\quad \left[\begin{array}{ll} u= \frac{\pi x}{2} & du=\frac{\pi}{2}dx\\ x=-1\Rightarrow u=-\pi/2 & \\ x=1\Rightarrow u=\pi/2 & \end{array}\right]$ $=(1+1)-\displaystyle \frac{1}{3}(1+1)-\int_{-\pi/2}^{\pi/2}\cos u(\frac{2du}{\pi})d$ $=\displaystyle \frac{4}{3}-\frac{2}{\pi}\left[\sin u \right]_{-\pi/2}^{\pi/2}$ $=\displaystyle \frac{4}{3}-\frac{2}{\pi}(1+1)$ =$\displaystyle \frac{4}{3}-\frac{4}{\pi}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.