Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 304: 58

Answer

$\displaystyle \frac{37}{12}$

Work Step by Step

Graphing the given equations, we find the intersections or we solve the equation $f(y)=g(y), $ where $ f(y)=2y \quad$ and $ g(y)=y^{3}-y^{2}\quad$ The solutions are $y=-1,0$ and $2$ When $y\in[c,d]=[-1,0],\ \quad g(y)$ is to the right of $f(y)$ the area between the graphs over this interval is $A_{1}=\displaystyle \int_{c}^{d} [g(y)-f(y)]dy=\displaystyle \int_{-1}^{0}[y^{3}-y^{2}-2y]dy $ $=\displaystyle \left[\frac{y^{4}}{4}-\frac{y^{3}}{3}-y^{2} \right]_{-1}^{0}=\frac{(0-1)}{4}-\frac{0+1}{3}-(0-1)$ $=\displaystyle \frac{5}{12}$ Over $[c,d]=[0,2],$ the curve $f(y)$ is to the right of $g(y)$ $A_{2}=\displaystyle \int_{c}^{d} [f(y)-g(y)]dy=-\displaystyle \int_{0}^{2}[y^{3}-y^{2}-2y]dy $ $=-\displaystyle \left[\frac{y^{4}}{4}-\frac{y^{3}}{3}-y^{2} \right]_{0}^{2}=-[\frac{(16-0)}{4}-\frac{8-0}{3}-(4-0)]$ $=\displaystyle \frac{8}{3}$ Total area = $A_{1}+A_{2}=\displaystyle \frac{5}{12}+\frac{8}{3}=\frac{37}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.