Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 304: 57

Answer

$2$

Work Step by Step

Graphing the given equations, we find the intersections or we solve the equation $f(y)=g(y), $ where $ f(y)=|y|\sqrt{1-y^{2}} \quad$ (the curve on the right side) and $ g(y)=y^{2}-1\quad$ (the curve on the left). When $y\in[c,d]=[-1,1]$, the area between the graphs is $A=\displaystyle \int_{c}^{d} [f(y)-g(y)]dy=\displaystyle \int_{-1}^{1}[|y|\sqrt{1-y^{2}}-y^{2}+1]dy $ Replacing $y$ with $-y$, the integrand remains the same$\Rightarrow$ integrand is symmetric about the x-axis. So we calculate the area for $y\in[0,1]$ and double it. (On this interval, $|y|=y$) $A=2\displaystyle \int_{0}^{1}[y\sqrt{1-y^{2}}-y^{2}+1]dy $ $=2\displaystyle \left[\int_{0}^{1}[y\sqrt{1-y^{2}}-y^{2}+1]dy \right]$ $=2\displaystyle \int_{0}^{1}[y\sqrt{1-y^{2}}dy+2\left[-\frac{y^{3}}{3}+y \right]_{0}^{1}$ ... substitute: $\left[\begin{array}{ll} u=1-y^{2} & du=-2ydy\\ y=0\Rightarrow u=1 & \\ y=1\Rightarrow u=0 & \end{array}\right]$ $=2\displaystyle \int_{1}^{0}u^{1/2}(-\frac{du}{2})+2\left[-\frac{1-0}{3}+(1-0) \right]$ $=-\displaystyle \left[\frac{u^{3/2}}{3/2}\right]_{1}^{0}+\frac{4}{3}$ $=-(0-\displaystyle \frac{2}{3})+\frac{4}{3}$ $=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.