Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 69

Answer

$\frac{1}{4}(b^4-a^4)$

Work Step by Step

Step 1. Let $f(x)=x^3$ and divide the interval $[a,b]$ into $n$ parts with equal width of $\Delta x=\frac{b-a}{n}$; we denote the partition as $||P||$ and as $n\to\infty, ||P||\to0$. Step 2. For the $k$th division, $x_k=a+k\Delta x, f(x_k)=(a+k\Delta x)^3=a^3+3a^2(k\Delta x)+3a(k\Delta x)^2+(k\Delta x)^3$ and the area of the rectangle of this division is given by $A_k=f(x_k)\Delta x=a^3\Delta x+3a^2(\Delta x)^2k+3a(\Delta x)^3k^2+(\Delta x)^4k^3=a^3(\frac{b-a}{n})+3a^2(\frac{b-a}{n})^2k+3a(\frac{b-a}{n})^3k^2+(\frac{b-a}{n})^4k^3$ Step 3. Evaluate the Riemann Sum as $A_R=\Sigma_{k=1}^nA_k=\Sigma_{k=1}^n(a^3(\frac{b-a}{n})+3a^2(\frac{b-a}{n})^2k+3a(\frac{b-a}{n})^3k^2+(\frac{b-a}{n})^4k^3)=a^3(\frac{b-a}{n})n+3a^2(\frac{b-a}{n})^2(\frac{n(n+1)}{2})+3a(\frac{b-a}{n})^3(\frac{n(n+1)(2n+1)}{6})+(\frac{b-a}{n})^4(\frac{n^2(n+1)^2}{4})=a^3(b-a)+a^2(b-a)^2(\frac{3(n+1)}{2n})+a(b-a)^3(\frac{(n+1)(2n+1)}{2n^2})+(b-a)^4(\frac{(n+1)^2}{4n^2})$ Step 4. Evaluate the integral as $\int_a^bx^2dx=\lim_{||P||\to0}A_R=\lim_{n\to\infty}A_R=a^3(b-a)+\frac{3}{2}a^2(b-a)^2+a(b-a)^3+\frac{1}{4}(b-a)^4=\frac{1}{4}(4a^3b-4a^4+6a^2b^2-12a^3b+6a^4+4ab^3-12a^2b^2+12a^3b-4a^3+b^4-4ab^3+6a^2b^2-4a^3b+a^4)=\frac{1}{4}(b^4-a^4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.