Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 61

Answer

a. $-\frac{1}{2}$ b. $1$ c. $\frac{1}{4}$

Work Step by Step

a. Separate the integration into regions $[-1,0],[0,1]$; we have $\int_{-1}^1 g(x)dx=\int_{-1}^0 g(x)dx+\int_{0}^1 g(x)dx=\int_{-1}^0 (-x-1)dx+\int_{0}^1 (x-1)dx=(-\frac{x^2}{2}-x)|_{-1}^0+(\frac{x^2}{2}-x)|_{0}^1=(\frac{(-1)^2}{2}-1)+(\frac{1^2}{2}-1)=-1$. Thus the average can be obtained as $\bar g_{[-1,1]}=av(g)=\frac{-1}{1-(-1)}=-\frac{1}{2}$ b. No separation is needed; we have $\int_{1}^3 g(x)dx=\int_{1}^3 (x-1)dx=(\frac{x^2}{2}-x)|_{1}^3=(\frac{(3)^2}{2}-3)-(\frac{1^2}{2}-1)=2$. Thus the average can be obtained as $\bar g_{[1,3]}=av(g)=\frac{2}{3-1}=1$ c. Combine the above results; we have $\int_{-1}^3 g(x)dx=\int_{-1}^1 g(x)dx+\int_{1}^3 g(x)dx=2-1=1$ and the average is $\bar g_{[-1,3]}=av(g)=\frac{1}{3-(-1)}=\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.