Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 62

Answer

a. $-\frac{1}{2}$ b. $-\frac{1}{2}$ c. $-\frac{1}{2}$

Work Step by Step

a. Using the figure to guide the calculations, we have $\int_{-1}^0 h(x)dx=\int_{-1}^0 (x)dx=(\frac{x^2}{2})|_{-1}^0=0-(\frac{(-1)^2}{2})=-\frac{1}{2}$. Thus the average can be obtained as $\bar h_{[-1,0]}=av(h)=\frac{-\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$ b. $\int_{0}^1 h(x)dx=\int_{0}^1 (-x)dx=(-\frac{x^2}{2})|_{0}^1=-(\frac{1^2}{2})-0=-\frac{1}{2}$. Thus the average can be obtained as $\bar h_{[-1,0]}=av(h)=\frac{-\frac{1}{2}}{1-0}=-\frac{1}{2}$ c. Combining the above results, we have $\int_{-1}^1 h(x)dx=\int_{-1}^0 h(x)dx+\int_{0}^1 h(x)dx=-1$ and the average is $\bar h_{[-1,1]}=av(h)=\frac{-1}{1-(-1)}=-\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.