Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 68

Answer

$0$

Work Step by Step

Use formula such as: $\int_{p}^{q} f(x)dx=\lim\limits_{n \to \infty} \Sigma_{k=1}^nf(a+k \triangle x)$ $\int_{-1}^{1} x^3 dx=\lim\limits_{n \to \infty}(\dfrac{2}{n}) \Sigma_{k=1}^n (-1+\dfrac{2k}{n})^3=\lim\limits_{n \to \infty}(\dfrac{2}{n})\Sigma_{k=1}^n(-1)+\dfrac{8k^3}{n^3}+\dfrac{6k}{n}-\dfrac{12k^2}{n^2}$ This implies that $\lim\limits_{n \to \infty}(-\dfrac{2}{n})\Sigma_{k=1}^n(1)+\dfrac{16}{n^4} \Sigma_{k=1}^nk^3+\dfrac{12}{n^2}\Sigma_{k=1}^n k-\dfrac{24}{n^3}\Sigma_{k=1}^nk^2=\lim\limits_{n \to \infty}[-2+4(1+\dfrac{1}{n})^2+(6)(1+\dfrac{1}{n})-(4)(1+\dfrac{1}{n})(2+\dfrac{1}{n})]$ Thus, $\int_{-1}^{1} x^3 dx=-2+4+6-8=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.