Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 63

Answer

$c(b-a)$

Work Step by Step

RIEMANN SUM states that: $\Sigma_{k=1}^n f(c_k) \triangle x=\Sigma_{k=1}^n \dfrac{c(b-a)}{n}$ or, $\Sigma_{k=1}^n \dfrac{c(b-a)}{n}=c(b-a)$ where $\triangle x=\dfrac{b-a}{n}; c_k=a+\dfrac{k(b-a)}{n}$ Now, $\lim\limits_{n \to \infty} \Sigma_{k=1}^n f(c_k) \triangle x=\lim\limits_{n \to \infty}c(b-a)$ Hence, $\int_a^{b} cdx=c(b-a)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.