Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 8

Answer

$$\frac{{dy}}{{dx}} = \frac{{7y - 3{x^2}{{\left( {x + 3y} \right)}^2}}}{{7x}}$$

Work Step by Step

$$\eqalign{ & {x^3} = \frac{{2x - y}}{{x + 3y}} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {{x^3}} \right) = \frac{d}{{dx}}\left( {\frac{{2x - y}}{{x + 3y}}} \right) \cr & {\text{use the quotient rule on the right side}} \cr & \frac{d}{{dx}}\left( {{x^3}} \right) = \frac{{\left( {x + 3y} \right)\frac{d}{{dx}}\left( {2x - y} \right) - \left( {2x - y} \right)\frac{d}{{dx}}\left( {x + 3y} \right)}}{{{{\left( {x + 3y} \right)}^2}}} \cr & {\text{solve derivatives}} \cr & 3{x^2} = \frac{{\left( {x + 3y} \right)\left( {2 - \frac{{dy}}{{dx}}} \right) - \left( {2x - y} \right)\left( {1 + 3\frac{{dy}}{{dx}}} \right)}}{{{{\left( {x + 3y} \right)}^2}}} \cr & {\text{simplify}} \cr & 3{x^2} = \frac{{2x - x\frac{{dy}}{{dx}} + 6y - 3y\frac{{dy}}{{dx}} - 2x - 6x\frac{{dy}}{{dx}} + y + 3y\frac{{dy}}{{dx}}}}{{{{\left( {x + 3y} \right)}^2}}} \cr & 3{x^2} = \frac{{ - 7x\frac{{dy}}{{dx}} + 7y}}{{{{\left( {x + 3y} \right)}^2}}} \cr & {\text{solve for }}\frac{{dy}}{{dx}} \cr & 3{x^2}{\left( {x + 3y} \right)^2} = - 7x\frac{{dy}}{{dx}} + 7y \cr & 3{x^2}{\left( {x + 3y} \right)^2} - 7y = - 7x\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{{7y - 3{x^2}{{\left( {x + 3y} \right)}^2}}}{{7x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.