Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 23

Answer

$\frac{dy}{dx}=\frac{x-y}{2+x-y}$ $\frac{d^2y}{dx^2}=\frac{4}{(2+x-y)^3}=\frac{1}{2(1+\sqrt y)^3}$

Work Step by Step

Step 1. Given the equation $2\sqrt y=x-y$, we have $2(\frac{1}{2\sqrt y})\frac{dy}{dx}=1-\frac{dy}{dx}$, which gives $(\frac{1}{\sqrt y}+1)\frac{dy}{dx}=1$; thus $(\frac{2}{x-y}+1)\frac{dy}{dx}=1$, $(\frac{2+x-y}{x-y})\frac{dy}{dx}=1$ and $y'=\frac{dy}{dx}=\frac{x-y}{2+x-y}$ Step 2. Differentiate again with respect to $x$: $y''=\frac{d^2y}{dx^2}=\frac{(2+x-y)(1-y')-(x-y)(1-y')}{(2+x-y)^2}=\frac{2(1-y')}{(2+x-y)^2}=\frac{2((1-\frac{x-y}{2+x-y})}{(2+x-y)^2}=\frac{2(2+x-y-x+y)}{(2+x-y)^3}=\frac{4}{(2+x-y)^3}=\frac{4}{(2+2\sqrt y)^3}=\frac{1}{2(1+\sqrt y)^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.