Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 11

Answer

$$\frac{{dy}}{{dx}} = \frac{{ - 1 - y{{\sec }^2}\left( {xy} \right)}}{{x{{\sec }^2}\left( {xy} \right)}}$$

Work Step by Step

$$\eqalign{ & x + \tan \left( {xy} \right) = 0 \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {\tan \left( {xy} \right)} \right) = 0 \cr & \cr & {\text{Solve derivatives}}{\text{, use the chain rule for }}\frac{d}{{dx}}\left( {\tan \left( {xy} \right)} \right) \cr & 1 + {\sec ^2}\left( {xy} \right)\frac{d}{{dx}}\left( {xy} \right) = 0 \cr & {\text{Use the product rule}} \cr & 1 + {\sec ^2}\left( {xy} \right)\left( {x\frac{d}{{dx}}\left( y \right) + y\frac{d}{{dx}}\left( x \right)} \right) = 0 \cr & 1 + {\sec ^2}\left( {xy} \right)\left( {x\frac{{dy}}{{dx}} + y} \right) = 0 \cr & \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & x{\sec ^2}\left( {xy} \right)\frac{{dy}}{{dx}} + y{\sec ^2}\left( {xy} \right) = - 1 \cr & x{\sec ^2}\left( {xy} \right)\frac{{dy}}{{dx}} = - 1 - y{\sec ^2}\left( {xy} \right) \cr & \frac{{dy}}{{dx}} = \frac{{ - 1 - y{{\sec }^2}\left( {xy} \right)}}{{x{{\sec }^2}\left( {xy} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.