Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 41

Answer

$-1$, $\sqrt 3$

Work Step by Step

Step 1. Given the function $y^4=y^2-x^2$, differentiate both sides with respect to $x$ to get $4y^3y'=2yy'-2x$ which gives $y'=\frac{x}{y-2y^3}$ Step 2. For point $(\frac{\sqrt 3}{4},\frac{\sqrt 3}{2})$, the slope $m_1=y'=\frac{\frac{\sqrt 3}{4}}{\frac{\sqrt 3}{2}-2(\frac{\sqrt 3}{2})^3}=\frac{\sqrt 3}{2\sqrt 3-3\sqrt 3}=-1$ Step 3. For point $(\frac{\sqrt 3}{4},\frac{1}{2})$, the slope $m_1=y'=\frac{\frac{\sqrt 3}{4}}{\frac{1}{2}-2(\frac{1}{2})^3}=\frac{\sqrt 3}{2-1}=\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.