Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 27

Answer

$${m_1} = - 1{\text{ and }}{m_2} = 1$$

Work Step by Step

$$\eqalign{ & {y^2} + {x^2} = {y^4} - 2x \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {{y^2}} \right) + \frac{d}{{dx}}\left( {{x^2}} \right) = \frac{d}{{dx}}\left( {{y^4}} \right) - \frac{d}{{dx}}\left( {2x} \right) \cr & {\text{find derivatives}} \cr & 2y\frac{{dy}}{{dx}} + 2x = 4{y^3}\frac{{dy}}{{dx}} - 2 \cr & {\text{solve for }}\frac{{dy}}{{dx}} \cr & 2y\frac{{dy}}{{dx}} - 4{y^3}\frac{{dy}}{{dx}} = - 2x - 2 \cr & \frac{{dy}}{{dx}} = \frac{{ - 2x - 2}}{{2y - 4{y^3}}} \cr & \frac{{dy}}{{dx}} = \frac{{ - x - 1}}{{y - 2{y^3}}} \cr & \cr & {\text{Find the slope at the points }}\left( { - 2,1} \right){\text{ and }}\left( { - 2, - 1} \right) \cr & {\left. {m = \frac{{dy}}{{dx}}} \right|_{\left( { - 2,1} \right)}} = \frac{{ - \left( { - 2} \right) - 1}}{{\left( 1 \right) - 2{{\left( 1 \right)}^3}}} = - 1 \cr & {\left. {m = \frac{{dy}}{{dx}}} \right|_{\left( { - 2, - 1} \right)}} = \frac{{ - \left( { - 2} \right) - 1}}{{\left( { - 1} \right) - 2{{\left( { - 1} \right)}^3}}} = 1 \cr & \cr & m = - 1{\text{ and }}m = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.