Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 14

Answer

$$\frac{{dy}}{{dx}} = \frac{{y\cos x - \cos \left( {2x + 3y} \right) + 2x\sin \left( {2x + 3y} \right)}}{{ - 3x\sin \left( {2x + 3y} \right) - \sin x}}$$

Work Step by Step

$$\eqalign{ & x\cos \left( {2x + 3y} \right) = y\sin x \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {x\cos \left( {2x + 3y} \right)} \right) = \frac{d}{{dx}}\left( {y\sin x} \right) \cr & \cr & {\text{Use the product rule}} \cr & x\frac{d}{{dx}}\left( {\cos \left( {2x + 3y} \right)} \right) + \cos \left( {2x + 3y} \right)\frac{d}{{dx}}\left( x \right) = y\frac{d}{{dx}}\left( {\sin x} \right) + \sin x\frac{d}{{dx}}\left( y \right) \cr & \cr & {\text{Find derivatives}} \cr & - x\sin \left( {2x + 3y} \right)\frac{d}{{dx}}\left( {2x + 3y} \right) + \cos \left( {2x + 3y} \right) = y\cos x + \sin x\frac{{dy}}{{dx}} \cr & - x\sin \left( {2x + 3y} \right)\frac{d}{{dx}}\left( {2x + 3y} \right) + \cos \left( {2x + 3y} \right) = y\cos x + \sin x\frac{{dy}}{{dx}} \cr & - x\sin \left( {2x + 3y} \right)\left( {2 + 3\frac{{dy}}{{dx}}} \right) + \cos \left( {2x + 3y} \right) = y\cos x + \sin x\frac{{dy}}{{dx}} \cr & \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & - 2x\sin \left( {2x + 3y} \right) - 3x\sin \left( {2x + 3y} \right)\frac{{dy}}{{dx}} + \cos \left( {2x + 3y} \right) = y\cos x + \sin x\frac{{dy}}{{dx}} \cr & - 3x\sin \left( {2x + 3y} \right)\frac{{dy}}{{dx}} - \sin x\frac{{dy}}{{dx}} = y\cos x - \cos \left( {2x + 3y} \right) + 2x\sin \left( {2x + 3y} \right) \cr & \left( { - 3x\sin \left( {2x + 3y} \right) - \sin x} \right)\frac{{dy}}{{dx}} = y\cos x - \cos \left( {2x + 3y} \right) + 2x\sin \left( {2x + 3y} \right) \cr & \frac{{dy}}{{dx}} = \frac{{y\cos x - \cos \left( {2x + 3y} \right) + 2x\sin \left( {2x + 3y} \right)}}{{ - 3x\sin \left( {2x + 3y} \right) - \sin x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.