Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.7 - Implicit Differentiation - Exercises 3.7 - Page 155: 26

Answer

$$\frac{{{d^2}y}}{{d{x^2}}} = - \frac{1}{4}$$

Work Step by Step

$$\eqalign{ & xy + {y^2} = 1 \cr & \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {xy} \right) + \frac{d}{{dx}}\left( {{y^2}} \right) = \frac{d}{{dx}}\left( 1 \right) \cr & x\frac{d}{{dx}}\left( y \right) + y\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {{y^2}} \right) = \frac{d}{{dx}}\left( 1 \right) \cr & {\text{find derivatives}} \cr & x\frac{{dy}}{{dx}} + y + 2y\frac{{dy}}{{dx}} = 0 \cr & {\text{solve for }}\frac{{dy}}{{dx}} \cr & \left( {x + 2y} \right)\frac{{dy}}{{dx}} = - y \cr & \frac{{dy}}{{dx}} = - \frac{y}{{x + 2y}} \cr & \cr & {\text{find the second derivative}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{d}{{dx}}\left( {\frac{y}{{x + 2y}}} \right) \cr & {\text{use the quotient rule}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{\left( {x + 2y} \right)\frac{d}{{dx}}\left[ y \right] - y\frac{d}{{dx}}\left[ {x + 2y} \right]}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{\left( {x + 2y} \right)\frac{{dy}}{{dx}} - y\left( {1 + 2\frac{{dy}}{{dx}}} \right)}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{x\frac{{dy}}{{dx}} + 2\frac{{dy}}{{dx}} - y - 2\frac{{dy}}{{dx}}}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{x\frac{{dy}}{{dx}} - y}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \cr & {\text{substitute }}\frac{{dy}}{{dx}} = - \frac{y}{{x + 2y}}{\text{ and simplify}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{x\left( { - \frac{y}{{x + 2y}}} \right) - y}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{{ - \frac{{xy}}{{x + 2y}} - y}}{{{{\left( {x + 2y} \right)}^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{{xy + xy + 2{y^2}}}{{{{\left( {x + 2y} \right)}^3}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{{2xy + 2{y^2}}}{{{{\left( {x + 2y} \right)}^3}}} \cr & \cr & {\text{Evaluate at the point }}\left( {0, - 1} \right) \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{{2\left( 0 \right)\left( { - 1} \right) + 2{{\left( { - 1} \right)}^2}}}{{{{\left( {0 - 2} \right)}^3}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.