Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 77

Answer

$$-2$$

Work Step by Step

The Taylor series can be written as follows: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-...........$ and $\cos x=1-\dfrac{x^2}{2}+\dfrac{ x^3}{3}-....$ $$\lim\limits_{z \to 0} \dfrac{1-\cos^2 z}{\ln (1-z) + \space \sin z}=\lim\limits_{z \to 0} \dfrac{1- (1-z^2+\dfrac{z^4}{3}-.......)}{(-z-\dfrac{z^2}{2}-....)+(z-(z^3/3!)+.....} \\=\lim\limits_{z \to 0} \dfrac{1-(z^2/3)+...}{-\dfrac{1}{2}-\dfrac{z}{3}-....} \\=-2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.