Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 76

Answer

$$\dfrac{1}{3}$$

Work Step by Step

The Taylor series can be written as follows: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-...........$ and $\cos x=1-\dfrac{x^2}{2}+\dfrac{ x^3}{3}-....$ $$\lim\limits_{h \to 0} (\dfrac{\sin (\dfrac{h}{h}) -\cos h}{h^2} =\lim\limits_{h \to 0} \dfrac{(\dfrac{1}{h}) (h-\dfrac{h^3}{3!}+\dfrac{h^5}{5!}-........)-(1-h^2/2!+h^4/4!-....) }{h^2}\\=\lim\limits_{h \to 0} (\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{h^2}{5!}-\dfrac{h^2}{4!}+.....) \\=\dfrac{1}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.