Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 69

Answer

$\approx 0.48491743$

Work Step by Step

Here, $e^{(-x^3)}=1+(-x^3)+\dfrac{(-x^3)^2}{2!}+\dfrac{(-x^3)^3}{3!}+\dfrac{(-x^3)^4}{4!}+...$ $\implies e^{(-x^3)}=1-x^3+\dfrac{x^6}{2!}-\dfrac{x^9}{3!}+\dfrac{x^{12}}{4!}+... $ Now, $\int_0^{1/2} e^{(-x^3)}=\int_0^{1/2} [1-x^3+\dfrac{x^6}{2!}-\dfrac{x^9}{3!}+\dfrac{x^{12}}{4!}+..]$ and $[x-\dfrac{x^4}{4}+\dfrac{x^7}{(7)2!}-\dfrac{x^{10}}{(10)3!}+\dfrac{x^{13}}{(13)4!}+..]_0^{1/2}=(\dfrac{1}{2})-(\dfrac{1}{64})+(\dfrac{1}{1792})+....\approx 0.48491743$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.