Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 73

Answer

$\dfrac{7}{2}$

Work Step by Step

Find $\lim\limits_{ x \to 0}\dfrac{7 \sin x}{e^{2x}-1}$ Now, $\lim\limits_{ x \to 0}\dfrac{7 \sin x}{e^{2x}-1}=\lim\limits_{ x \to 0}\dfrac{7 (x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...)}{(1+2x+\dfrac{2^2x^2}{2!}+\dfrac{2^3x^3}{3!}+\dfrac{2^4x^4}{4!}+.)-1}$ and $\lim\limits_{ x \to 0}[\dfrac{7x (1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-...)}{x(2+\dfrac{4x}{2!}+\dfrac{8x^2}{3!}+...)}]=\dfrac{7 (1-0+0-...)}{(2+0+0+...)}=\dfrac{7(1)}{2}=\dfrac{7}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.